Estimation of the density of absolute noncentrality parameters, using linear B-spline model.
nparncpp(p,
breaks=min(2000,round(length(p)/5)),
test=c("t","z"),
df,
alternative=c("two.sided", "less", "greater"),
compromise.n=1,
lambdas=#if(penalty_type==1)10^seq(-2,6,length=6) else
10^seq(-4,6,length=11),
deltamax='auto',
nknots,
ndelta=500,
solver=c("lsei","LowRankQP","solve.QP","ipop"),
weights=1,
keep.cdf=NULL,
LowRankQP.method=c('LU','CHOL'),
lsei.method=c('chol','svd','eigen'),
debugging=FALSE,
...)
p-value vector
break points to bin the p-values
either t
-test or z
-test
degrees of freedom for the test
Same as in t.test
Number of components in the compromised estimate
Candidate tuning parameters
Assumed maximum noncentrality parameters
Number of knots
Number of points to evaluate the noncentrality parameters
Quadratic programming solver function
Bin weights
Either NULL
or an environment
. If non-null, the computed computed conditional CDF will be saved keep.cdf
. See cond.cdf
.
Method for LowRankQP
Method for lsei
Logical: print excessive messages
Additional argumenets to solver
An object of class c('nparncpp','ncpest')
.
Ruppert, Nettleton, Hwang. (2007) Exploring the Information in \(p\)-values for the Analysis and Planning of Multiple-test Experiments. Biometrics. 63. 483-495.